$\begin{array}{c} {\rm MA114~Summer~2018}\\ {\rm Worksheet~25-Calculus~with~Polar~Curves-7/26/18} \end{array}$

1. Find the slope dy/dx for the following polar curves:

a)
$$r = 2\cos(\theta) + 1$$

b) $r = \frac{1}{\theta}$

- 2. Compute the slope of the tangent line to the graph of $r = \sin \theta$ at $\theta = \pi/3$, and sketch the curve and the tangent line.
- 3. Find the area enclosed by one leaf of the curve $r = \sin 2\theta$.
- 4. Find the arc length of one leaf of the curve $r = \sin 2\theta$.
- 5. Find the area between the inner and outer loop of the limaçon $r = 2\cos\theta 1$.
- 6. Find the tangent line to the polar curve $r = \theta^2$ at $\theta = \pi$.
- 7. Find the length of the curve $r = \theta^2$ for $0 \le \theta \le 2\pi$.
- 8. Find the area of the region that lies inside both the curves $r = \sqrt{3} \sin \theta$ and $r = \cos \theta$.
- 9. Find the point(s) where the tangent line to the curve $r = 2 + \sin \theta$ is horizontal.