MA114 Summer 2018

Worksheet 25 - Calculus with Polar Curves - 7/26/18

1. Find the slope $d y / d x$ for the following polar curves:
a) $r=2 \cos (\theta)+1$
b) $r=\frac{1}{\theta}$
2. Compute the slope of the tangent line to the graph of $r=\sin \theta$ at $\theta=\pi / 3$, and sketch the curve and the tangent line.
3. Find the area enclosed by one leaf of the curve $r=\sin 2 \theta$.
4. Find the arc length of one leaf of the curve $r=\sin 2 \theta$.
5. Find the area between the inner and outer loop of the limaçon $r=2 \cos \theta-1$.
6. Find the tangent line to the polar curve $r=\theta^{2}$ at $\theta=\pi$.
7. Find the length of the curve $r=\theta^{2}$ for $0 \leq \theta \leq 2 \pi$.
8. Find the area of the region that lies inside both the curves $r=\sqrt{3} \sin \theta$ and $r=\cos \theta$.
9. Find the point(s) where the tangent line to the curve $r=2+\sin \theta$ is horizontal.
